Dual Memory Architectures for Fast Deep Learning of Stream Data via an Online-Incremental-Transfer Strategy
نویسندگان
چکیده
The online learning of deep neural networks is an interesting problem of machine learning because, for example, major IT companies want to manage the information of the massive data uploaded on the web daily, and this technology can contribute to the next generation of lifelong learning. We aim to train deep models from new data that consists of new classes, distributions, and tasks at minimal computational cost, which we call online deep learning. Unfortunately, deep neural network learning through classical online and incremental methods does not work well in both theory and practice. In this paper, we introduce dual memory architectures for online incremental deep learning. The proposed architecture consists of deep representation learners and fast learnable shallow kernel networks, both of which synergize to track the information of new data. During the training phase, we use various online, incremental ensemble, and transfer learning techniques in order to achieve lower error of the architecture. On the MNIST, CIFAR-10, and ImageNet image recognition tasks, the proposed dual memory architectures performs much better than the classical online and incremental ensemble algorithm, and their accuracies are similar to that of the batch learner. ICML workshop on Deep Learning 2015, Lille, France, 2015. Copyright 2015 by the author(s).
منابع مشابه
Dual-Memory Deep Learning Architectures for Lifelong Learning of Everyday Human Behaviors
Learning from human behaviors in the real world is important for building human-aware intelligent systems such as personalized digital assistants and autonomous humanoid robots. Everyday activities of human life can now be measured through wearable sensors. However, innovations are required to learn these sensory data in an online incremental manner over an extended period of time. Here we prop...
متن کاملDual-memory neural networks for modeling cognitive activities of humans via wearable sensors
Wearable devices, such as smart glasses and watches, allow for continuous recording of everyday life in a real world over an extended period of time or lifelong. This possibility helps better understand the cognitive behavior of humans in real life as well as build human-aware intelligent agents for practical purposes. However, modeling the human cognitive activity from wearable-sensor data str...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملDetecting Concept Drift in Data Stream Using Semi-Supervised Classification
Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...
متن کاملOnline Incremental Feature Learning with Denoising Autoencoders
While determining model complexity is an important problem in machine learning, many feature learning algorithms rely on cross-validation to choose an optimal number of features, which is usually challenging for online learning from a massive stream of data. In this paper, we propose an incremental feature learning algorithm to determine the optimal model complexity for large-scale, online data...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1506.04477 شماره
صفحات -
تاریخ انتشار 2015